Dynamic mechanical response and a constitutive model of Fe-based high temperature alloy at high temperatures and strain rates
نویسندگان
چکیده
The effects of strain rate and temperature on the dynamic behavior of Fe-based high temperature alloy was studied. The strain rates were 0.001-12,000 s(-1), at temperatures ranging from room temperature to 800 °C. A phenomenological constitutive model (Power-Law constitutive model) was proposed considering adiabatic temperature rise and accurate material thermal physical properties. During which, the effects of the specific heat capacity on the adiabatic temperature rise was studied. The constitutive model was verified to be accurate by comparison between predicted and experimental results.
منابع مشابه
MODELING HIGH TEMPERATURE FLOW BEHAVIOR OF AN AL 6061 ALUMINIUM ALLOY
Hot deformation behavior of a medium Cr/Mn Al6061 aluminum alloy was studied by isothermal compression test at temperatures range of 320 to 480 °C and strain rates range of 0.001 to 0.1 s −1. The true stresstrue strain curves were analyzed to characterize the flow stress of Al6061. Plastic behavior, as a function of both temperature and strain rate for Al6061, was also modeled using a hyperboli...
متن کاملHot Deformation Behavior of 17-7 PH Stainless Steel
To investigate the hot deformation behavior of 17-7 PH stainless steel, hot compression tests were carried out at the temperatures of 950, 1050 and 1150 oC and strain rates of 0.001 s-1 to 0.1 s-1. Accordingly, the hot working behavior was studied by the analyses of flow stress curves, work hardening rate versus stress curves, exponent- type constitutive equations and deformed microstructures. ...
متن کاملPREDICTION OF HOT DEFORMATION BEHAVIOUR OF A PH STAINLESS STEEL AT HIGH STRAIN RATES
In this study the hot deformation behaviour of a precipitation hardened (PH) stainless steel at high strain rates has been predicted through hot compression testing. Stress-strain curves were obtained for a range of strain rates from 10-3 to 10+1 S-1 and temperatures from 850 to 1150°C. Results obtained by microstructure and stress-strain curves show that at low temperatures and high strain rat...
متن کاملNonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres
General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...
متن کاملA comparative study on constitutive modeling of hot deformation flow curves in AZ91 magnesium alloy
Modeling the flow curves of materials at elevated temperatures is the first step in mathematical simulation of the hot deformation processes of them. In this work a comparative study was provided to examine the capability of three different constitutive equations in modeling the hot deformation flow curves of AZ91 magnesium alloy. For this, the Arrhenius equation with strain dependent constants...
متن کامل